If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-45x-150=0
a = 3; b = -45; c = -150;
Δ = b2-4ac
Δ = -452-4·3·(-150)
Δ = 3825
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3825}=\sqrt{225*17}=\sqrt{225}*\sqrt{17}=15\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-45)-15\sqrt{17}}{2*3}=\frac{45-15\sqrt{17}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-45)+15\sqrt{17}}{2*3}=\frac{45+15\sqrt{17}}{6} $
| (x-4)(7-x)=5x^2 | | (x^2+12)=(6x+16) | | 14,500+2,500t=33,500 | | -(x-15)=52 | | (x-4)(7-x)=5x*x*x | | (x-4)(7-x)=5x*x | | 31+2v=71 | | 25=5(u-2) | | (x-4)(7-x)=5x² | | 2(3-h)=-6=-5h | | 7(x-4)=6(2x+3) | | 7x(X-10)=140 | | 12=3(c+4) | | (x-4)(7-x)=5x2 | | 4y+3=-2y+-9 | | .7x+x=80 | | 1/6v+1=1/4v-1 | | 3x+124=29+6x | | x.x+8=-24 | | 7x+4(4x-3)=103 | | 2x+15=6x+43 | | 2x+14=13x-4 | | 10(x−5)=−80 | | 6=2n-8;6 | | 4.7x+6.6=8.1+4.2x | | n-16=72 | | -5n-8(1+7n)=54 | | x.x-8=-24 | | 7x-27=8x-6 | | 24+3y+1=180 | | (6x+16)+(6x-2)=(14x-10) | | 7p+3=9 |